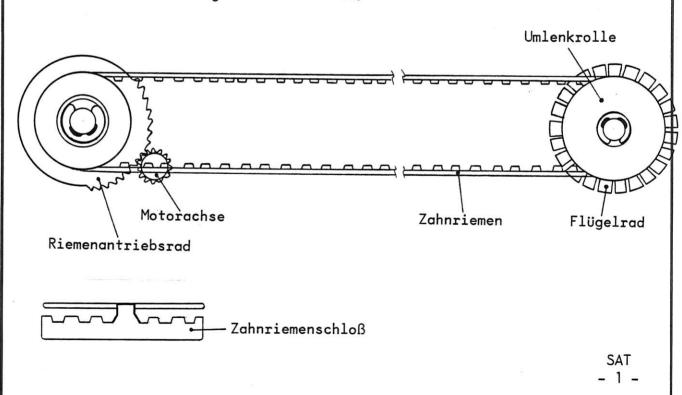


Papiertrenneinrichtung FKH 01

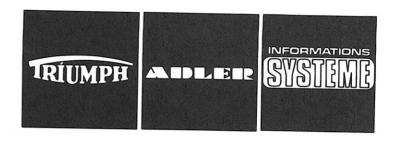
Allgemeines:

Mit der Papiertrenneinrichtung kann das Endlosformular in jeder gewünschten (programmierten) Zeile getrennt werden.

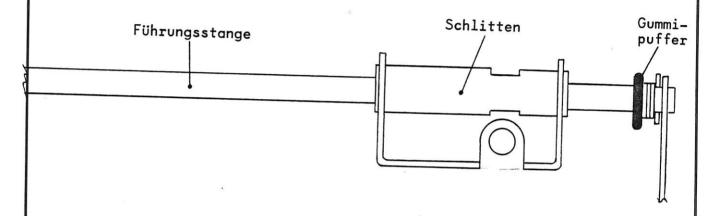

Die Papiertrenneinrichtung ist mittels zweier Klinken in das Druckergestell eingehängt und kann somit für Servicezwecke schnell ausgebaut werden.

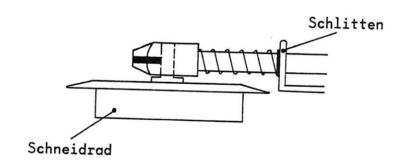
Achtung: Vor Ausbau der Trenneinrichtung muß das Messingband und das Schneidrad entfernt werden !

Das Aggregat ist zwischen Druckbalken und erster Transportfriktion angeordnet und reicht über die gesamte Druckerbreite.


Prinzip

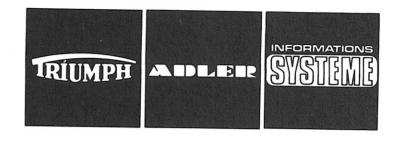
Ein taktgeregelter Gleichstrommotor treibt mit konstanter Geschwindigkeit einen 132 cm langen Zahnriemen an.




і тд1069 S

Auf einer Achse (Führungsstange) ist ein Schlitten, vertikal beweglich, angebracht. Dieser Schlitten ist mit dem Zahnriemen fest verbunden.

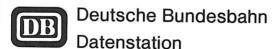
An dem Schlitten ist federnd das Schneidrad gelagert.

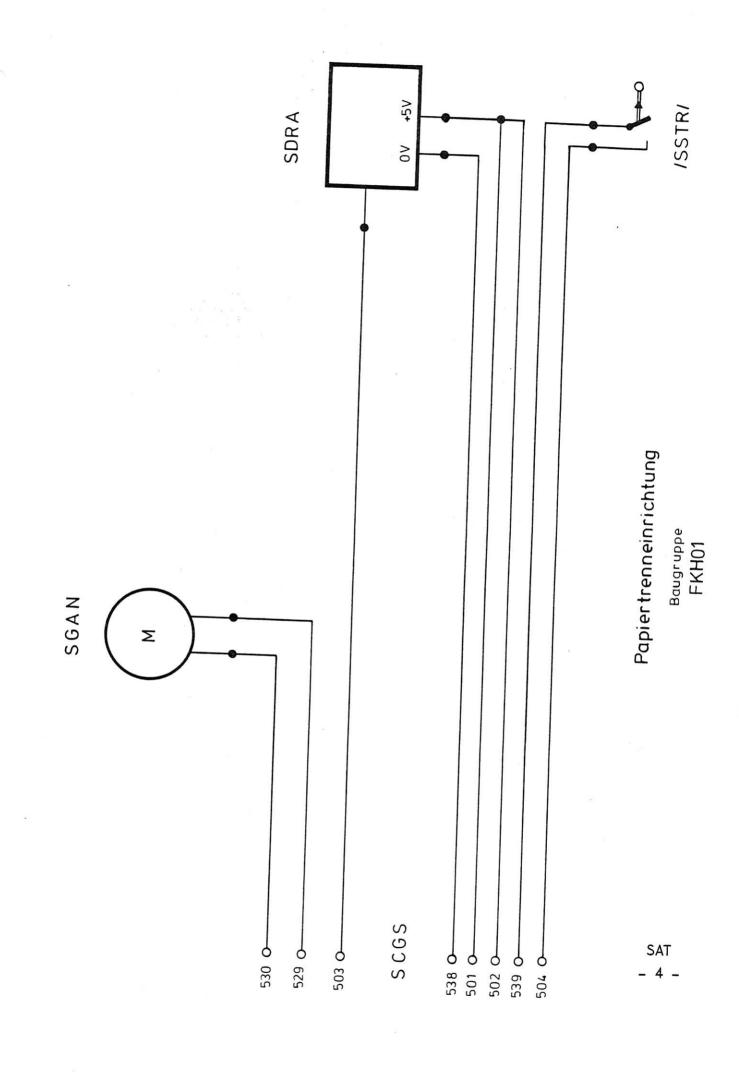


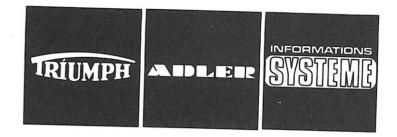
Durch die mechan. Anordnung wird beim bestromen des Motors das Schneidrad vertikal bewegt.

Rechts befindet sich die Ruhestellung des Schneidrades, die durch einen Mikroschalter erkannt wird.

SAT - 2 -

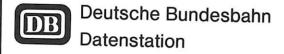

Ein Flügelrad auf der rechten Zahnriemenumlenkrolle taucht in eine Durchlichtschranke SDRA. Die Durchlichtschranke liefert das Signal zur Motordrehzahlregelung. In einer Regelschaltung wird der eingestellte Sollwert mit dem Istwert (Lichtschrankenimpulse) verglichen und die Differenz als kürzere oder längere Bestromzeit des Motors ausgegeben. Durch die Überwachung der Drehbewegung wird eine gleichmäßige Geschwindigkeit des Schneidrades gewährleistet.


Vor dem Schneidrad ist über die gesamte Druckerbreite ein Messingband gespannt. Dieses Band dient der Papierauflage.


Zwischen dem Messingband und dem Schneidbalken wird das Endlosformular geführt.

Das Schneidrad fährt mit seiner scharfen Kante auf dem Schneidbalken entlang und trennt dadurch das Papier.

SAT - 3 -



Kurz- bezeichnung	Geräte- teil	elektrisches Bauteil	Funktion		
SCGS	Papiertrennein- richtung	Stecker	<u>G</u> eräteteil <u>S</u> tiftseite		
SDRA	"	Durchlicht- schranke	<u>R</u> egelimpulse für <u>A</u> ntrieb		
SGAN	п	Gleichstrom- motor	<u>A</u> ntrieb		
SGR	"	Mikroschalter	Rechtslauf		
SGL	TI .	Mikroschalter	Linkslauf		
SSTR	n	Mikroschalter	Position <u>Traktor rechts</u>		

SAT

I таюб9 s

ASZV ASML bit 6 bit 7 bit 8 bit 9 SDRA SSTR き bit 11 bit 12 Kass. I/O-Bed. SAT FGC 11 bit 13 Geräte Nr. TKKN2 Reser. bit 14 TKKN bit 15 TKKNF bit 16 Karten Nr. Modell: INPUT Zeile Zeile Zeile Zeile 2,3 4,5 0,1

TDOT

ADDT

ASEV /

bit 1

bit 2

bit 3

bit 4

bit 5

/TAET/

/TSDG/

TSPV

, EZIT,

ATZ1

ATZ3

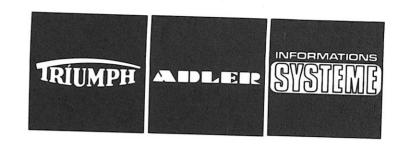
6,7

	-	T			T			_	111	/	X	11	/
	bit								TA/	1	1	ATA	' ' '
	bit	2						11111	TTAR	1		ATAR	
	bit	2						11111	TTAS			ATAS	////
	bit	7							TAN T			ATAU	1///
	bit 5								TAATT			ATA	///
	bit										77	-777	7,
	bit 7		200								-		
	9 <u>i</u> t												
	bit 9		SGL							1			
	<u>=</u> 0		SGR										
1114	ž=												-
+:4	12									\mid			
bi t	13						1						
bit	17						1						
bit	15				TO SE								1
bit	16		KKNR										
TI IGTI IC		Zeile	0,1	7cil-	allaz	2,3	1	Zeile	4,5	70:10	allaz	6,7	

SAT 6 -

Kass. I/O Bed. SAT Steckerbelegungsschema

			Г					
3	9 0 V	′ т	\dashv	40	Sc	hirm		
3	+ - '	1	-	38	0	VI		
-			\dashv	36				
3.	-		_;	34	+3	6 V		
33	3 +36	V	_;	32		V II		
31	0 V	II	-	30				
29	SGAN	l	-	+	SG	AN		
27			-	28				
25			_ 2	6				
23			_ 2	4		Than 100 Con West		
			_ 2	2			,	
21			- 20			6		\exists
19			18	3				\dashv
17			16	+	20.77			4
5			-	\vdash				\dashv
3			14	\vdash				
1			12					
,			10					
,			8					7
+			6					1
+			4		SSTR			1
-	SDRA		2		+5 V			1
	+5 V				+5 V]
					1			


Leistungssignale

TTL-Signale

Farbcode: rt

SAT - 7 -

Auswurftransporteinrichtung: FKE 01 / FKF 01

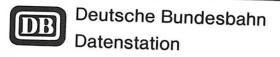
Dieses Aggregat besteht im wesentlichen aus Papierweichen und Papierauswurfeinrichtung.

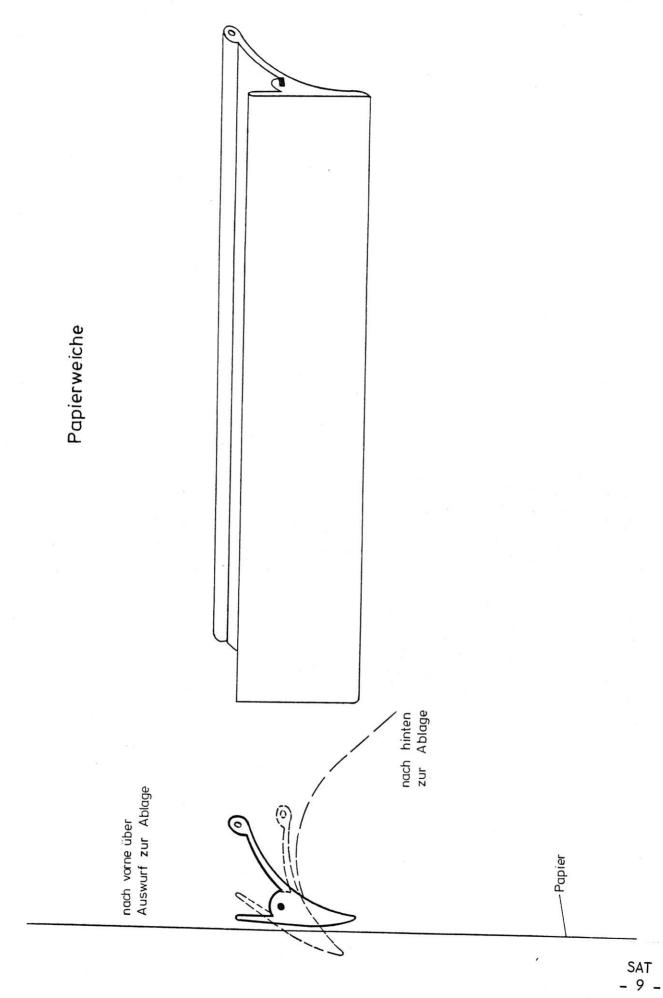
Die FKE 01 wird mit Ausnahme der Papierweichen vom Programm. gesteuert, alle Bewegungsabläufe werden überwacht.

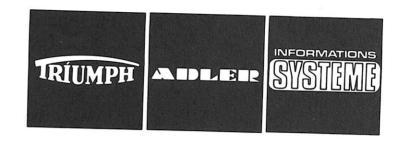
Vom Programm kontrolliert werden:

- a) Papierweichenstellung von Einzel und Endlosformular nach vorn oder nach hinten.
- b) Rotation von Transportrollen
- c) Einzelformular ausgeworfen
- d) Endlosformular ausgeworfen

Papierweichen:


Im Verständigungsbereich Byte 8 für EF und Byte 4 bei EZ kann die gewünschte Papierweichenstellung für EF und EZ programmiert werden (Ø $\stackrel{\circ}{=}$ vorn; 1 $\stackrel{\circ}{=}$ hinten). Die Papierweichen müssen entsprechend der Programmierung von der Bedienung eingestellt werden.


Wird ein Endlosformular > 120 Teilungen verarbeitet, so müssen <u>beide</u> Papierweichen entsprechend der in der LF – Tabelle von EF programmierten Weichenstellung eingestellt werden.

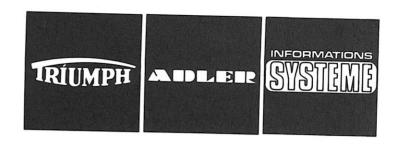

Immer dann, wenn ein Formular (EF oder EZ) auf die 1. bedruckbare Zeile positioniert wurde, darf die Papierweiche des entsprechenden Gerätes nicht mehr verstellt werden.

Dies bedeutet, daß bei der Endlosformulareinrichtung vor dem Befehl OPEN 1 die Papierweicheneinstellung definiert werden muß und erst nach Ausführung eines CLOSE 1 Befehls die Papierweichenstellung für EF erneut festgelegt werden kann.

SAT - 8 -

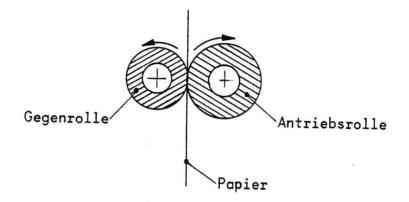
Für die Einzelformulareinrichtung gilt, daß vor dem Einzugbefehl (Codierung 2.0) die Papierweiche für EZ definiert werden muß. Erst, wenn das sich im EZ – Schacht befindliche Formular mit Hilfe eines Auswurf – Befehls ausgeworfen wurde, kann die Weichenstellung erneut festgelegt werden.

Das System erkennt selbständig, welches der Formulare (EF oder EZ) ausgeworfen werden soll anhand folgender Kriterien:


- a) wenn das Endlosformular geschnitten ist, dann wird dieses entsprechend der eingestellten Papierweiche nach vorn (oder hinten) ausgeworfen.
- b) befindet sich kein geschnittenes Endlosformular im EF Schacht, so wird das Einzelformular entsprechend der eingestellten Papierweiche nach vorn (oder hinten) ausgeworfen.

Verriegelung Endlosschacht - Einzelschacht:

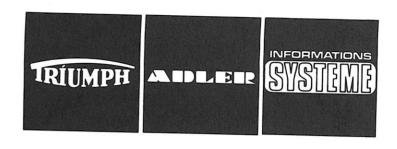
Wird mit Befehl OPEN 1 ein Endlosformular auf die 1. bedruckbare Zeile transportiert, so ist ein Einzugbefehl für EZ $(2.\emptyset)$ nur zulässig, wenn die Formularbreite vom Endlos < 120 Teilungen ist. Alle Befehle für die Einzelformulareinrichtung sind zulässig, wenn das Endlosformular nach hinten ungeschnitten mit einer Formularbreite < 120 Teilungen verarbeitet wird.


SAT -10-



Mechanischer Aufbau

Zwischen zwei aufeinanderliegenden drehenden Gummirollen wird das Papier durch den Auswurfschacht gezogen und in der davorliegenden Ablage abgelegt.



Die Gummirollen sind auf einer Achse aufgeklebt. Auf einer Antriebsachse (Friktion), welche sich über die gesamte Breite des Auswurfgerätes erstreckt, sind 8 Rollen angebracht. Vier Achsen hintereinander ziehen das Papier durch das Auswurfgerät

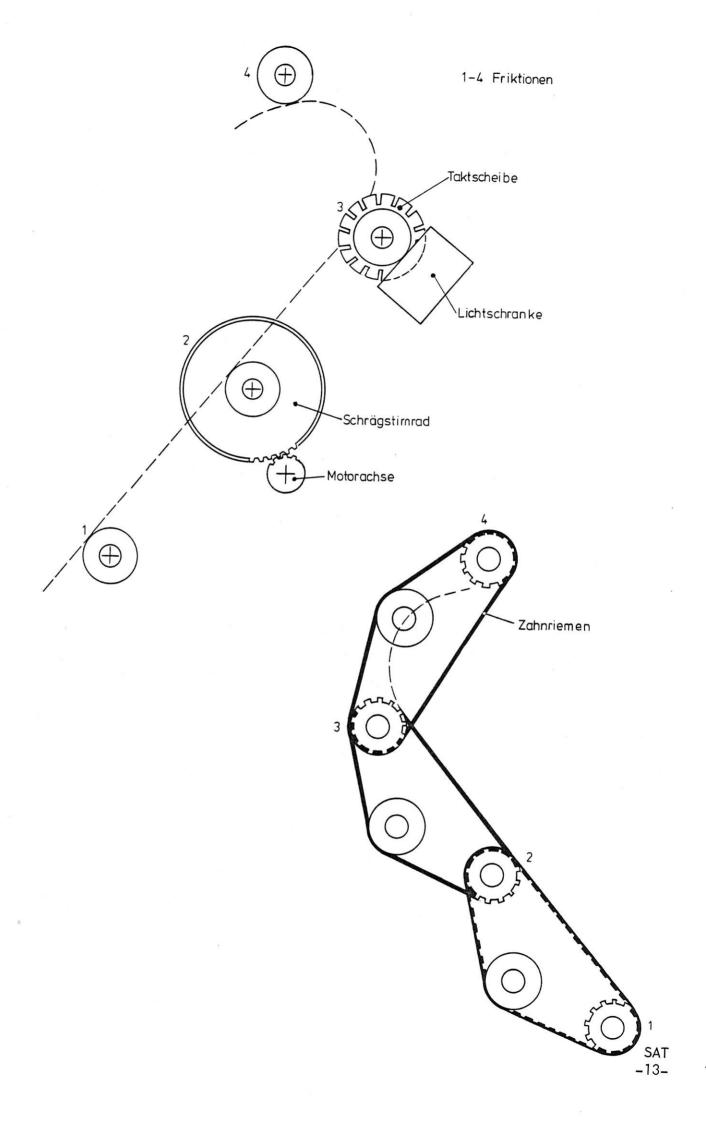
SAT -11-

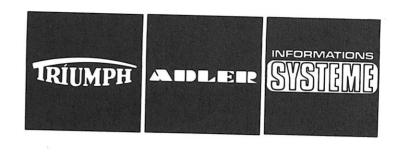
Ein zentraler Antrieb der vier Achsen wird durch einen Schrittmotor ATAN über ein Schrägstirnrad ausgeführt. Dabei wird eine Untersetzung von 4: 20 verwendet.

Ein gleichmäßiges Rotieren der vier Friktionen wird über Zahnriemen erreicht.

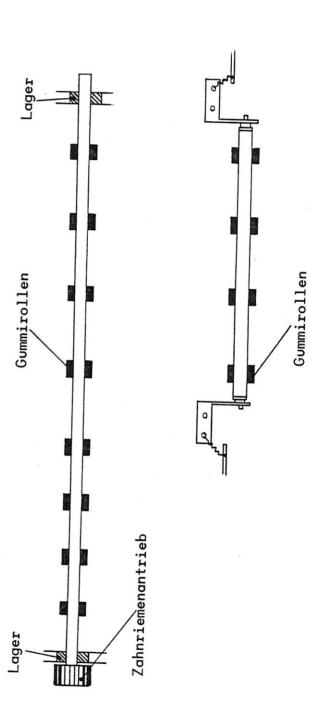
Die Gegenrollen zu den vier angetriebenen Friktionen sind auf einer unterteilten Achse aufgeklebt und werden mit Federn an die Antriebs-rollen angedrückt.

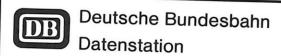
Die Ansteuerung des Schrittmotors erfolgt über das Mikroprogramm durch eine spez. Motorsteuerschaltung (siehe Schrittmotor).

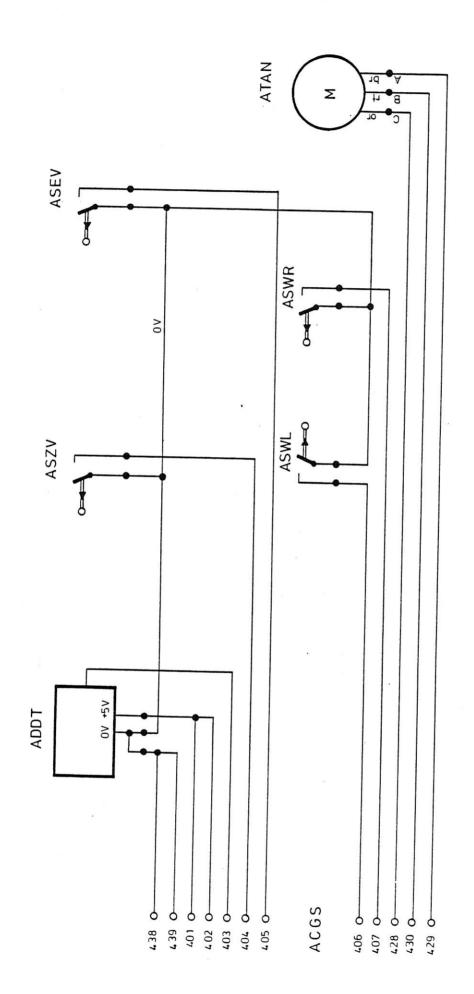

Die Drehbewegung der Friktionen wird mit einer Durchlichtschranke ADDT überwacht.


Zwei Mikroschalter ASZV/ASEV im Auswurfschacht geben die Meldung Endlosformular bzw. Einzelformular ausgeworfen.

Zwei weitere Mikroschalter ASWL und ASWR geben die Weichenstellung an. Die Auswurftransporteinrichtung ist mit zwei Klinken in den Druckerrahmen eingehängt. Über ein Gerätekabel (Steckerreihe 400) wird das Aggregat an die I/O-Karte "SAT" angeschlossen.

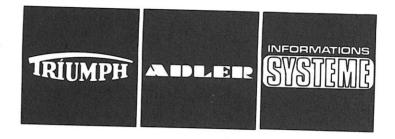

SAT -12-




Friktion

SAT -14-

I ТА1069 S


Auswerftransporteinrichtung

Baugruppe FKE01

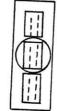
Karten Nr. Ø Geräte Nr. Modell: Kass. I/O-Bed. SAT FGC 11

	ē.	-			TOOT		/TAET/				
	bit	7					/TAZ3/ /TAET/	/			
	pit				ADDT		/LSDG/	/			
	bit				ASEV		TSPV				
	bit 5				ASZV						
	bit				ASML						
	bit 7				ASWR						
	bit 8								3		
	bit 9	11:11								IZL.	
	bit 10	11111								172	11/1/
	1 pit	٠								EZTT.	11/1/
	bit 12									ATZ1	
250	bit 13	5 e -	100						22	ATZ2	
Ndss. I/U-bed. SAI FGC II	bit 14	TKKN2 Reser.								ATZ3	
1/0-bec	bit 15	TKKN									
П	bit 16	TKKNF									
יוסקבוי.	INPUT	Zeile 0,1	7pilp	77.11	2,3	Zeile	5'7		Zeile	6,7	

bit	-					TTAV	7	ATAV
bit	7					TTAR	7	ATAR
bit	ກ	6				TTAS		ATAS
bit	t					TTAU	7	ATAU
bit	7					TTAA		ATAA
bit								2
bit 7						70		
pit 8								
bit 9		SGL						
bit 10		SGR						
bit 11								
bit 12								
bit 13								
bit 14				,				
bit 15								
bit 16		TKKNR	SPREED					
OUTPUT	Zeile	0,1	Zeile	2,3	Zeile	4,5	Zeile	6,7

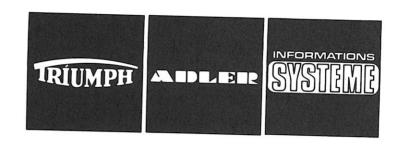
Kurz- bezeichnung	Geräte teil	elektrisches Bauteil	Funktion
ACGS	Auswerftrans- porteinrichtung	Stecker	<u>G</u> eräteteil <u>S</u> tiftseite
ADDT		Durchlicht- schranke	<u>D</u> rehung Papier <u>t</u> ransport- wellen
ASEV	n.	Mikroschalter	<u>E</u> ndlosformular liegt <u>v</u> or
ASWL	д	"	Weiche Links in Position Auswurfgerät
ASWR	11	ıı .	<u>W</u> eiche <u>R</u> echts in Position Auswurfgerät
ASZV	п	ū	Ein <u>z</u> elformular liegt <u>v</u> or
ATAN	Œ	Schrittmotor	<u>A</u> ntrieb
ATAA	п	· ·	Motor aktiv
ATAU	п	п	Motor übererregt
ATAS	п	п	Motor bestromt
ATAR	н	ii .	Motor rückwärts
ATAV	11	· "u .	Motor vorwärts

SAT - 17 -


Kass. I/O Bed. SAT Steckerbelegungsschema

				_	_	
	39	0 V I		4	0	Schirm
	37	0,1		3	8	OVI
	_			30	6	
	35			34	1	
	33	+36 V		-	+	+36 V
ſ	31		7	32	-	O A II
-	\dashv	OVII	\dashv	30		ATAN/B
-	29	ATAN/A	_	28		ATAN/C
Ŀ	27		_	26	-	
12	25		+	_	L	
2	23		- 2	24		
\vdash	+		- 2	22		
12	1		_2	0		
1	9		-	+	_	
1:	7		1'	8		
1!	5		1	6		
\vdash	+		14	4		
13	4		12	2		
11			10	+		
9	'		10	4		
7		ACUD	8	L		·
_	\vdash	ASWR	6			ASWL
5		ASEV	4			
3		ADDT	2			ASZV
1		+ 5 V	_		+	+ 5 V
			_			

Leistungssignale


TTL-Signale

Farbcode: rt/ws

SAT

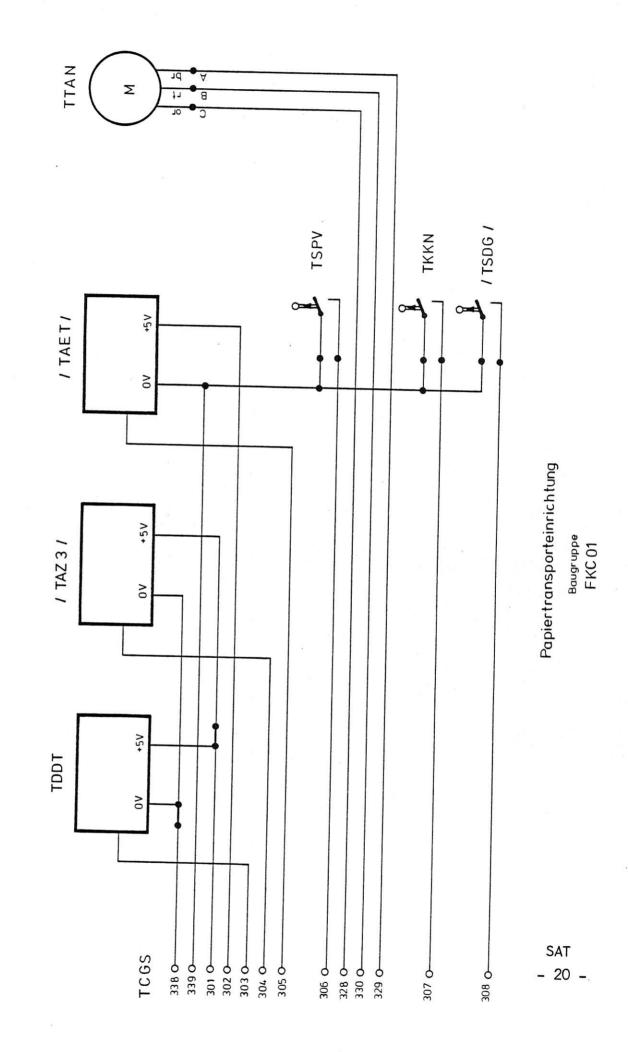
-18-

Papiertransporteinrichtung FKC 01

Die Papiertransporteinrichtung ist für den Transport des Endlosformulars und Einzelformulars zuständig.

Zwei hintereinander liegende Friktionen werden von einem Schrittmotor über Schrägstirnrad und Zahnriemen angetrieben.


Der Transport wird durch die Durchlichtschranke TDDT überwacht.


Zwei unter dem Papierleitblech montierte Auflichtschranken dienen der Kontrolle Endlosformular vorhanden und Endlosformularbreite größer 318 mm.

Die FKC 01 ist mit der I/O-Kassette "SAT", Steckerreihe 300, Farb-code rot/gelb, verbunden.

SAT

-19-

	T			F		ET	_	Τ	
	bit			TOOT		/TAET/			
	bit	2				/TAZ3/			
	bit	m		ADDT		/TSDG/ /TAZ3/			
	pit.	7		ASEV	7	TSPV			
	ē,	n		ASZV	7				
	bit		11111	ASM	7777				
	bit		11111	ASWR	7777			0	
	bit								
	bit	/ 2//	1111	N					IZLI
	pit 10	SSTR							TTZ2
	bi t								TTZ3
	bit 12					8	11111	//	ATZI
FGC 11	bit 13						1111	1	A LE
Kass. I/O-Bed. SAT FGC 11	bit 14	TKKN2 Reser.					11111		A153/
. I/0-Be	bit 15	TKKN							
- 11	bit 16	TKKNF		*					
Modell:	INPUT	Zeile 0,1	7pilo	2,3	Zaila	4,5	7 : 1	elle elle	6,7

Karten Nr. Ø

		_			_		 	-/				_
bit	-							TTAV			ATAV	1111
bit	2							TTAR			ATAR	1///
bit	3							TTAS			ATAS	/
bit	7							TTAU		1111	ATAU	1
bit	5							TTAA		1	ATAA	
bit	9									~~		7.
bit	,											
bit	۵											
bit	1		SGL	7777								
bit	2/		SGR	777								
bit 11								::	1			
bit 12	:								T			
bit 13												
bit 14												
bit 15												
bit 16		TKKNIP										
OUTPUT	70ile	allaz	0,1		elle7	2,3	Zeile	4,5	7.11.	allaz	6,7	

Kurz- bezeichnung	Geräte- teil	elektrisches Bauteil	Funktion
/TAET/	Papiertransport- einrichtung	Auflichtschr.	Endlosformular vorhanden,
/TAZ3/	II .	ш	Kontrolle <u>Transportlochung</u> a) Ein <u>z</u> elformular vorhanden b) Endlosformularbreite
TCGS	"	Stecker	größer <u>3</u> 18 mm <u>G</u> eräteteil <u>S</u> tiftseite
TDDT	"	Durchlicht- schranke	<u>Drehung Papiertransport-</u> welle
/TSDG/	u °	Mikroschalter	<u>D</u> rucker <u>g</u> eschlossen
TSPV	11	TI .	Endlospapier vorhanden
TTAN	н	Schrittmotor	Antrieb
TTAA	II .	Kontakt	Motor aktiv
TTAU	"	11	Motor Überstrom
TTAS	· u	m.	Motor bestromt
TTAR	<u>. II</u>	n	Motor rückwärts
TTAV	11		Motor vorwärts
TKKN	п	n.	Kontrolle Nadelfubktion

SAT

-22-

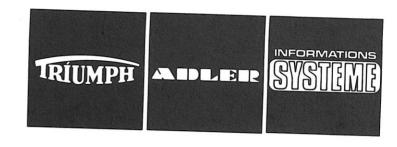
Kass. I/O Bed. SAT Steckerbelegungsschema

		_	
۲		4	O Schirm
-	0 V I	_ 3	BOVI
	37	30	5
3	35	34	
3	+36 V	-	
3	OVII	32	OVII
2	9 TTAN/A	30	TTAN/B
2	1171177	_ 28	TTAN/C
-		26	
2		24	
23	3	22	
21			
19		20	
17		18	
15		16	¥
-		14	
13		12	
11		10	
9	7	8	/TSDG /
7	TKKN	+	/TSDG/
5	/TAET/	6	TSPV
3	TDDT	4	/TAZ3/
1	+5 V	2	+5 V

Leistungssignale

TTL-Signale

Farbcode: rt/ge


500 (501 - 540)

400 (401 - 440)

300 (301 - 340)

SAT

-23-

<u>Papierandruckeinrichtung</u>

Die Papierandruckeinrichtung ist ein rein mechanisches Aggregat. In Zusammenwirkung mit der FKC 01 dient sie dem Papiertransport von Endlos- und Einzelformular.

Die Andruckfriktion ist unterteilt.

Durch die federnde Aufhängung sind die Friktionen schwenkbar und passen sich somit der Papierstärke an.

SAT

-24-

Deutsche Bundesbahn Datenstation

і ТА1069